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Abstract
Bioenergy is expected to play an important role in long-run climate change
mitigation strategies as highlighted by many integrated assessment model (IAM)
scenarios. These scenarios, however, also show a very wide range of results, with
uncertainty about bioenergy conversion technology deployment and biomass feed-
stock supply. To date, the underlying differences in model assumptions and
parameters for the range of results have not been conveyed. Here we explore
the models and results of the 33rd study of the Stanford Energy Modeling Forum
to elucidate and explore bioenergy technology specifications and constraints that
underlie projected bioenergy outcomes. We first develop and report consistent
bioenergy technology characterizations and modeling details. We evaluate the
bioenergy technology specifications through a series of analyses—comparison with
the literature, model intercomparison, and an assessment of bioenergy technology
projected deployments. We find that bioenergy technology coverage and charac-
terization varies substantially across models, spanning different conversion routes,
carbon capture and storage opportunities, and technology deployment constraints.
Still, the range of technology specification assumptions is largely in line with
bottom-up engineering estimates. We then find that variation in bioenergy deploy-
ment across models cannot be understood from technology costs alone. Important
additional determinants include biomass feedstock costs, the availability and costs
of alternative mitigation options in and across end-uses, the availability of carbon
dioxide removal possibilities, the speed with which large scale changes in the
makeup of energy conversion facilities and integration can take place, and the
relative demand for different energy services.
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1 Introduction

Studies have highlighted that bioenergy could play a potentially significant role in the long-run
management of climate change, substantially lowering the cost of realizing climate goals, and
even facilitating the feasibility of those goals (Rose et al. 2014; Clarke et al. 2014; Luckow
et al. 2010; Klein et al. 2014; Kriegler et al. 2014; Van Vuuren et al. 2010). Many of these
same studies have also indicated significant variation in results, illustrating that bioenergy’s
potential role is highly uncertain regarding bioenergy conversion technology deployment and
biomass feedstock supply. These general findings are investigated in greater detail in this 33rd
study of the Stanford Energy Modeling Forum (EMF-33), which focuses explicitly on
evaluating the potential role of bioenergy technologies in pursing ambitious climate objectives
(Bauer et al. 2018; Rose et al. 2020). Figure 1 provides an illustration of the magnitude and
heterogeneity of bioenergy deployment for a given climate policy and set of technology
assumptions from the EMF-33 study.

There is understandable skepticism about the feasibility of large-scale bioenergy deploy-
ment. Concerns have been raised regarding the implications of the volume of biomass
potentially needed, as well as the characteristics and deployment levels of bioenergy facilities
over time (Anderson and Peters 2016; Buck 2016; Field and Mach 2017; Fuss et al. 2014; Bui
et al. 2018; Lomax et al. 2015; Creutzig et al. 2015; Smith et al. 2016). To date, underlying
differences in bioenergy modeling methodologies and assumptions have not been conveyed or
explored. The EMF-33 study was designed explicitly to address this need and inform thinking
about the viability of bioenergy for climate management. While Bauer et al. (2018) gives an
overview on bioenergy deployment scenarios and a broad sensitivity analysis, and Rose et al.
(2020) provides an overview on biomass supply modeling, this paper elucidates and explores
bioenergy technology specifications and constraints that underlie projected bioenergy
outcomes.

Transparency on details of bioenergy technology assumptions is needed to facilitate
interpretation and evaluation of results, to inform R&D strategies, and to inform policy

Fig. 1 Deployment of bioenergy by model for a climate scenario with a 1000 GtCO2 carbon budget for energy
and industrial CO2 emissions over the period 2011–2100—a annual deployment (EJ/year) and b bioenergy as a
fraction of total of respective secondary energy carrier
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aspirations and design. Projected cost-effective deployment patterns of bioenergy for contain-
ing climate change depend on assumptions regarding the availability, cost, and performance of
bioenergy conversion technologies, as well as implementation barriers, technology transition
assumptions, and system-wide limitations. This paper provides transparency and analysis, the
former by elucidating the representations and parameterizations of bioenergy technologies, and
the latter in the evaluation of those representations and scenario deployment results. We
systematically present and compare assumptions concerning bioenergy technologies and the
bioenergy deployment and transition dynamics emerging from the integrated assessment
models (IAMs) participating in the EMF-33 study. This systematic comparison contributes
to improved transparency and understanding of the uncertainty around future bioenergy
technology performance and deployment, and offers insights into the bioenergy strategies
observed in long-run climate management scenarios.

The study is organized as follows: first, we describe our approach, then, we present results
as a progression of assessments from parameters to deployment. Specifically, we assess
bioenergy technology cost parameters, bioenergy technology cost (including feedstock and
CO2 capture costs), and bioenergy technology deployment. We conclude with a summary of
key insights and further discussion.

2 Methods

The overall EMF-33 intermodel comparison study is motivated by the need to understand the
feasibility of climate change mitigation targets and uncertainty about the role and deployment
of advanced bioenergy technologies (ABT). The EMF-33 scenarios assume limits on global
carbon budgets, applied to cumulative global energy and industry CO2 emissions from 2011 to
2100 (see Bauer et al. 2018). Each model participating in the EMF-33 study achieves the
carbon budget by imposing a constraint on cumulative emissions, setting a global emissions
trajectory that satisfies the cumulative constraint, or setting a global CO2 price path that
achieves the budget. The socioeconomic context of these scenarios is similar across models
with SSP2-like assumptions that locate models in the medium range of challenges to mitiga-
tion (O’Neill et al. 2017, Bauer et al. 2018).

The EMF-33 study has led to a number of research articles, including an overview of the
scenarios and projections (Bauer et al. 2018), and a series of thematic papers on the importance
and sensitivity of BECCS in mitigation strategies (Muratori et al. 2020), bioenergy and
transport sector decarbonization (LeBlanc et al. 2020), bioenergy trade (Daioglou et al.
2020), as well as a detailed assessment of biomass feedstock supply modeling and implications
(Rose et al. 2020; Hanssen et al. 2019). The present paper focuses on technoeconomic
assumptions of advanced bioenergy technologies and their effect on the use of bioenergy in
climate change mitigation strategies.

The analysis of this paper is based on modeling assumptions and projections of ten of the
twelve IAMs participating in the EMF-33 project. To understand model behavior, key
bioenergy technology assumptions and model dynamics are collected through a survey and
detailed results reporting. The survey gathers technology specification details on capital costs,
conversion efficiencies, feedstock costs, operation, and maintenance (O&M) costs (fixed and
variable), CCS capture rates, biomass feedstocks, readiness of CCS technologies, technology
lifetimes, the representation of technological change, and emission factors. Bioenergy
technoeconomic parameters are then compared with the available literature and expert opinion,

1605



Climatic Change (2020) 163:1603–1620

and the projected bioenergy deployment strategies of the models are linked to methodological
choices and assumptions.

For this study, we compare bioenergy technology clusters according to the final energy
carrier they produce. These include three different bioliquids (1st generation ethanol, biodiesel,
and advanced lignocellulosic based biofuels), electricity, and hydrogen—all with and without
CCS. Our comparison presents the cost and efficiency of each technology concerning the
primary product as enumerated above. This ignores potential joint products of multioutput
conversion technologies like combined heat and power.

The technology specification data and the biomass feedstock prices of each model are used
to compute the levelized cost of energy (LCOE) for each bioenergy technology (according to
the method detailed in Online Resource 1). While IAMs may not make investment decisions
based on LCOE, this indicator is useful as a comparison metric for exploring the economics
and competitiveness, and variation in model assumptions and their resulting bioenergy
deployments. We then investigate deployment patterns of alternative secondary energy tech-
nologies (including bioenergy, renewables, and fossil counterparts) and how they relate to
model assumptions. For readability, we focus on global average results, noting that models
exhibit significant regional variation in biomass feedstock costs but little regional variation in
bioenergy techno-economic parameters (see Online Resource 2, Fig. S1). All regional
technoeconomic parameters and results presented in this paper are available online
(Supplementary_Data.xlsx).

3 Bioenergy technology representation

Most models include technologies for producing hydrogen, liquid fuels, and electricity from
biomass (Table 1). However, the production of heat and gaseous fuels tends to not be
represented (recognizing that gasification of biomass feedstocks is embedded in other tech-
nologies, e.g., biomass-fed IGCC). The conversion technologies utilize broad groups of
biomass feedstocks—lignocellulosic crops, food crops, managed forest, miscanthus, and
residues (incl. agricultural, forestry, municipal solid waste). This approach ignores potential
differences between feedstocks within a group in technology processes, costs, efficiencies,
learning, and readiness. All models have some form of advanced biofuel technology based on
a lignocellulosic feedstock—crops, residues, or biomass from managed forests. Modeling of
biomass feedstock logistics tends to be simple, with cost and/or emission factors for transport
(including interregional trade), fertilizer use (usually accounted in the land-use sector), and
nonrenewable energy use in the production of biofuels included in most models. While not
specifically modeled, feedstock costs may include details such as feedstock seasonality,
drying, and storage. Concerning bioenergy with CO2 capture and geologic storage (BECCS)
technologies, all models include bioelectricity generation with CCS, while BECCS in hydro-
gen and liquid fuels is represented in only a subset of the models. This is despite the fact that
carbon capture and storage is, in principle, simpler in hydrogen and liquid biofuel production
since CO2 is separated as part of the gasification process (Larson et al. 2012). All models
assume the availability of BECCS from 2030 onwards, with some models assuming BECCS
available as early as 2021. The assumed possibility of significant deployment of BECCS
within the next 10 years may be questionable as currently there are only a few pilot projects.
Furthermore, there are biophysical, social, and economic obstacles towards faster development
and adoption of this technology (Creutzig et al. 2015; Smith et al. 2016).
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All models include certain assumptions on the dynamics of technoeconomic performance.
Most models have exogenous assumptions concerning the improvement of conversion effi-
ciencies and capital costs over time. Alternatively, some models (IMACLIM, IMAGE, and
POLES) include endogenous investment cost reductions based on learning-by-doing that are
persistent once they are realized. There are, also, differences concerning how models deal with
the adoption and ramp-up of new technologies that impose temporary limits on expansion. The
flexibility of models to swap between technologies and fuels can be categorized into two broad
types: (i) nonlinear sharing with different fuels competing with each other for a market share
based on changes in relative prices; and, (ii) flexible models that shift to the cheapest cost
alternative. Once marginal technology choices have been made, models also typically have
constraints on capacity ramp-up in order to avoid sudden and abrupt changes in technological
mixes. Most models tend to limit growth based on a maximum growth rate (BET, DNE21+,
FARM, IMACLIM, IMAGE, POLES). The MESSAGEix-GLOBIOM and REMIND-
MAgPIE models constrain growth rates by applying a penalty on technology costs depending
on the growth in capacity additions. For CCS technologies, some models include increasing
costs based on depletion of geologic storage resources (DNE21+, GRAPE-15, IMAGE,
POLES).

4 Results

In the subsections that follow, we assess the techno-economic data and the model represen-
tations with respect to deployment patterns. First, we explore the technoeconomic parameter-
ization of bioenergy technologies across models, comparing the assumptions and their
projected development to literature and expert opinion. We then use these parameters together
with model-specific projections for feedstock costs, carbon price, and emission factors, to
calculate LCOEs across technologies and models. Finally, the calculated LCOEs are
contrasted to bioenergy deployment levels, and we discuss the bioenergy strategies adopted
and their relationship to each model’s technology specification.

4.1 Assessing bioenergy cost parameters

Figure 2 shows capital costs and conversion efficiency assumptions for bioenergy technologies
in 2020. The figure also shows corresponding data from literature reviews—either for existing
facilities or from detailed techno-economic analyses (Gerssen-Gondelach et al. 2014; Muratori
et al. 2017; Klein et al. 2011; NREL 2015; Larson et al. 2012).

Across models, we observe wide ranges of capital costs for biofuel and bioelectricity
technologies. The ranges are for the most part in agreement with the literature, which also
exhibits wide ranges. In the literature, the ranges represent, among other things, variation in the
size of conversion facilities (i.e., larger scale facilities have lower costs) and the primary
feedstocks used. IAMs typically represent technology being scale-free, implicitly assuming a
certain size during parameterization, which implies that economies-of-scales are not exploited
(see Klein et al. 2011). Model assumptions for the conversion efficiency of 1st generation
ethanol tend to be similar across models, and in agreement with literature. For bioelectricity,
advanced biofuels, and biodiesel, while both literature values and model parameters display
wide ranges for both capital costs and conversion efficiencies, model assumptions tend to be
slightly more optimistic (thus implicitly assuming large scale conversion facilities) but are not
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systematically more optimistic than results reported in bottom-up technoeconomic studies. For
biohydrogen, the models tend to be quite optimistic concerning conversion efficiency.

Across models, the capital costs of CCS technologies compared to the base costs (i.e., the
technology without CCS) increase by 2–242%, 10–315%, and 3–35% for electricity, liquids,
and hydrogen, respectively. The penalty on conversion efficiencies (percentage points) due to
the integration of CCS is 0–15%, 0–10%, and 0–12% respectively. Note that the full ranges
presented here are heavily skewed; refer to Online Resource 2 for histograms of these
penalties. Literature data for CCS technologies are limited to results from process modeling
studies. These suggest that models are generally optimistic (especially for bioelectricity) about
the additional capital cost and efficiency loss when a technology is equipped with CCS.

To assess projected costs and efficiencies, we compare the ranges of model results (full
ranges shown, see Online Resource 2 for histograms of ranges) with an expert elicitation
(Baker et al. 2015). Baker et al. (2015) gathered expert opinion on the expected future (2030)
cost and efficiency of, among other things, advanced bioenergy technologies for different
levels of R&D investments. For bioelectricity without CCS, the model range in 2030 for
efficiency is 24–56%. According to Baker et al.’s expert elicitation, the expected efficiencies in
2030 for this technology are approximately 20–30%, 25–35%, and 30–50% for “low”,
“medium”, and “high” levels of research and development respectively. Concerning nonener-
gy costs of bioelectricity, the expert elicitation returned ranges of 30–90, 20–70, and 20–45
$2005/MWh for “low”, “medium”, and “high” R&D levels, respectively. This compares with
the model range for nonenergy costs of 11–109 $2005/MWh (with most values below 50 $2005/
MWh, see Online Resource 2).1 For bioliquids efficiency in 2030, expert elicitation ranges are
35–45%, 40–80%, and 45–75% respectively, while the model range for the equivalent

1 Nonenergy costs include capital costs and operation and maintenance costs.

Fig. 2 Capital costs and conversion efficiencies of bioenergy technologies in 2020 across different IAMs and
post-2010 literature. Note, models may have more than one instance of a given technology. Figure shows global
mean for each model, regional parameters shown in Online Resource 2
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technologies is 20–60%. Nonenergy costs for bioliquids in 2030 from the expert elicitation are
20–70, 15–60, and 15–55 $/2005MWh respectively, and for the models 0.2–53 $2005/MWh.

The cost and efficiency penalties of equipping bioenergy technologies with CCS are
projected to decrease over time across all models. The expert elicitation in Baker et al.
(2015) highlighted CCS costs of 410–1235, 80–905, and 40–905 $2005/kW for “low”, “medi-
um”, and “high” R&D levels respectively. The IAMs investigated here show ranges of 58–
2854 $2005/kW (liquids) and 87–2748 $2005/kW (electricity).

Overall, the above comparisons indicate that while IAM projections of the costs and
efficiencies of bioenergy technologies are somewhat optimistic, they are generally in line with
the expectations of experts. However, experts expect that realizing these technological im-
provements requires R&D expenditures two to ten times greater than current R&D levels of
OECD countries—approximately 360 M$2005/year (OECD 2018; Baker et al. 2015). For
further details on the modeled ranges of different cost components and how they relate to
the expert elicitation, see Online Resource 2.

4.2 Assessing bioenergy deployment costs

Using the gathered technoeconomic data we calculate the levelized cost of different energy
carriers in order to better understand differences in projected bioenergy deployment between
models. As shown in the Online Resource 1, the LCOE includes model specific capital, O&M,
feedstock, and emission costs, including payments for carbon dioxide removal (CDR) in the
case of BECCS technologies. In the calculation of the LCOEs, all parameters are based on
model and scenario specific assumptions/projections except for discount rates and capacity
factors for renewables. The calculation of each cost component follows the IPCCmethodology
in Krey et al. (2014) with two exceptions,2 and our LCOE calculations are based on the EMF-
33 policy scenario with a cumulative energy and industry CO2 emissions budget of 1000
billion metric tons of CO2 (GtCO2) over the 2011–2100 period with each models’ default
technologies available.

Figure 3 presents 2030, 2050, and 2100 levelized costs for each model for bioelectricity,
advanced biofuels, biodiesel, and biohydrogen, with and without CCS. A progression of
LCOEs for bioenergy are calculated for technologies, starting with capital and O&M costs
alone (top row), adding in biomass feedstock costs (middle row), and finally adding in CDR
payments (bottom row). For additional details regarding capital and O&M cost assumptions
and levelized costs, see Online Resources 2 and 3. Note that some models have multiple
instances of a given technology, all of which are displayed. Most models show a modest
reduction in capital and O&M costs over time, driven by learning, which may be endogenous
(IMAGE and IMACLIM), exogenous (BET, DNE21, GCAM, GRAPE, MESSAGEix-
GLOBIOM, and REMIND-MAgPIE), or a combination of both (POLES). Models with
endogenous learning display positive feedback loops for specific technologies, where in-
creased adoption leads to further cost reductions, making it even more competitive. On the
other hand, if a technology is not adopted in these models, we observe little or no improvement
in capital costs. For instance, in the IMAGE results, only one lignocellulosic biofuel technol-
ogy exhibits significant cost reductions because it is being deployed (see Online Resource 3).

2 The calculation here differs from the IPCC methodology in that we include payments for CDR, and do not
include decommissioning costs as these costs are not included in IAMs. Decommissioning costs, however, may
be substantial, especially for nuclear power.
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In all models, increased use of bioenergy is driving up feedstock prices throughout the
projection period, with feedstock costs eventually dwarfing other cost components, especially
after 2050. Feedstock costs are projected to represent 12–99% of the LCOE by 2030, see
(Online Resource 2).3 By the end of the century, there are substantial increases in the LCOEs
for all models, but particularly for BET, DNE21+, and IMACLIM, all of which see midcentury
LCOEs (excluding CDR) in excess of 500 $2005/MWh. Note that biomass cost-supply curves
are model specific, and, for some models, biomass feedstock costs are also a function of land
GHG mitigation incentives (e.g., land carbon and N2O), see Rose et al. (2020). For DNE21+,
GRAPE, IMACLIM, IMAGE, MESSAGEix-GLOBIOM, and REMIND-MAgPIE, feedstock
costs increase with demand, as well as increasing prices for land-related GHG emissions that,
among other things, value direct and indirect emissions from biomass feedstock production.
Additionally, besides biomass feedstock costs rising with carbon prices, previous IAM studies
have shown that feedstock costs also reflect rising prices for food products (Muratori et al.
2016; Klein et al. 2014). Overall, feedstock costs are also the cost component with the greatest
regional variations and uncertainty across models (see Supplementary Data and Online
Resource 2 for details).

The LCOEs with CDR payments illustrate the potential for significant CDR revenues for
BECCS technologies if the carbon removals are remunerated, with revenues increasing over
time as the cumulative carbon constraint increasingly binds. The revenues result in partial to
more than complete compensation for rising feedstock costs, with negative overall costs
possible after midcentury. As shown in Online Resource 4, LCOEs of BECCS technologies
become negative at carbon prices greater than ≈ 250$2005/tCO2 for most models. Also, it is
worth noting that the models/technologies with the lowest overall LCOE tend to be those
which have the highest capture rates. Interestingly, while the DNE21+ and GCAM models
project the highest carbon price, these models do not display negative BECCS LCOEs, largely
due to their very high feedstock costs.

4.3 Assessing bioenergy technology deployment

As shown in Fig. 1 andBauer et al. (2018), the EMF-33models adopt vastly different bioenergy
technology deployment strategies in meeting a particular climate objective. A number of factors
help explain the deployment differences. In this section, we explore the relationship between
bioenergy deployment and relative technology costs—contrasting biomass, renewables and
fossil technologies—and integration constraints in biomass allocation across end-uses.

In a framework based solely on static costs, the technologywith the lowest cost would supply the
overall market, which implies dramatic shifts between technology investments (also known as
“penny-switching” and “bang-bang behavior”). However, in IAMs, investment decisions are not
based only and simply on costs, like the LCOE estimates in section 4.2. Instead, IAMs also consider
transitional and system integration factors, as well as market dynamics, that are relevant for
technology deployment and overall energy system pathways. These include constraints on capacity
expansion of innovative technologies, capital turnover of incumbent technologies, market share
constraints for individual technologies, and in the case of CCS technologies, limitations on
geological injection of CO2 (Muratori et al. this issue). Therefore, while cost is an important
indicator for technology deployment at the individual plant level, system integration factors are
crucial in determining overall deployment and energy system transformation.

3 Range based on technologies without CCS. Inclusion of CCS can lead to negative LCOEs.
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Transitional and system integration factors can trigger early investments to overcome
barriers for innovative technologies or they can constrain expansion when limits are reached.
Barriers considered in IAMs are high start-up and investment costs that are decreased by
technological learning (endogenous or exogenous) or limitations on capacity expansion.
Intertemporal optimization models (BET, DNE21, GRAPE, MESSAGEix, REMIND-
MAgPIE) anticipate such barriers, triggering early investments to overcome them. In this case,
technology ramp-up would start although costs exceed the market price. Conversely, if the
barriers are not anticipated, as is the case in models that solve for recursive dynamic pathways
(AIM/CGE, GCAM, IMACLIM, IMAGE, POLES), the barriers act as hard constraints on
technology ramp-up. Unless the cost falls below the market price, the ramp-up cannot be
accelerated. Moreover, during a transition phase, the costs of incumbent technologies that phase
out of the system are higher than the cost of the innovative technology that is in a growth phase.
The large capacity stock of the incumbent technology, if not decommissioned either through
early retirement or by reaching its technical lifetime, can act as a growth limitation for the
innovative technology. These barriers are relevant at early stages of the innovation cycle and are
mostly technology specific.

As technologies are scaled-up, gaining larger shares in the energy mix, system-wide
constraints can limit expansion. For example, the economic and physical limitations of
biomass feedstock availability are highly relevant, especially for the second half of the century.
These limitations are reflected in higher feedstock market prices and their influence on the
LCOE (Fig. 3). Additionally, increases in the share of bioenergy in various market segments
may lead to integration challenges, and thus differences in the LCOE of technologies that
simultaneously penetrate the market. As described in section 3, integration challenges are
modeled by nonlinear sharing approaches or limitations on market share, which can be hard
bounds or cost mark-ups that increase with market share (Table 1). For BECCS technologies,
geological storage space and limitations on the rate of CDR can constrain expansion and result
in market prices higher than the calculated LCOE for BECCS technologies.

Figure 4 shows, for eachmodel, the 2050 deployment of bioenergy, and competing technologies,
relative to their total levelized cost (capital, O&M, feedstock and CDR costs). The arrows show the
direction in which the technologies move in the two-dimensional LCOE-deployment space through
to 2100 (full 2050–2100 trajectory of each technology are available in Online Resource 5). Panel A
presents the relative deployments and costs for bioliquids and fossil-based liquids, while panel B
presents deployments and costs for electricity production for bioenergy, renewables, nuclear, and
fossil-based technologies. The deployment and market share of each technology depends on the
model flexibility for substituting between energy conversion technologies. Table 1 mentioned that
somemodels allow for nonlinear sharing of different technologies (AIM/CGE,GCAM, IMACLIM,
IMAGE, POLES), and others allow full-flexibility where fuel mixes shift towards the cheapest
option, subject to constraints (BET, DNE21+, GRAPE, MESSAGEix-GLOBIOM, REMIND-
MAgPIE). Models with nonlinear sharing formulations project investments in and operation of
technologies other than the cheapest, with market shares usually based on relative costs.

While model flexibility drives the long-term substitution between conversion technologies,
it does not explain the persistent use of more expensive technologies in the near-term,
particularly for liquids. This result is due, in part, to energy system inertia modeled via
constraints in technological change and substitution. This helps explain the relatively high
deployment of fossil fuels in 2050 despite their high costs due to the carbon price. Constraints
in capacity ramp-up and decommissioning of existing capital (see Table 1) lead to lower
deployment of bioenergy (and other low-carbon options) in the first half of the twenty-first
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century. In most models, the inertia in technological change has been largely overcome by
2100, resulting in more prominent use of low LCOE options, and bioenergy in particular.

How biomass is cost-effectively allocated across bioenergy uses also depends on the broader
energy sector context in which they are used. GCAM,MESSAGEix-GLOBIOM, and REMIND-
MAgPIE show a rapid post-2050 phase out of fossil-based liquids, highlighting that biobased
liquids are the preferred bioenergy technology. However, this is not the case for most models
despite the heavy penalties on fossil-based liquids imposed by the carbon price. This raises further
questions about how models allocate biomass between liquid or electricity conversion processes.
BET and DNE21+ focus their biomass conversion on electricity (while also deploying significant
levels of other renewables). These models, however, do not include a liquids BECCS option and
also project some of the lowest levels of energy demand by simulating demand side mitigation
measures such as efficiency improvements. For instance, they project low energy demand for
transport, easing the pressure for decarbonizing the sector through the production of low-carbon

Fig. 3 Bioenergy LCOEs inclusive of different costs components: capital + O&M costs (top), with feedstock
costs (middle), and with CDR costs (bottom). Results shown for 2030 and 2050. Y-axis’ scales vary and are
limited to ± 500US$2005/MWh. Note: These LCOEs are estimated based on the technoeconomic parameters of
the models. The models themselves may not base their projections on LCOEs
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liquid fuels. In contrast, GCAM, MESSAGEix-GLOBIOM, and REMIND-MAgPIE prefer to
convert biomass to liquid fuels. Each of these models features high levels of nonbioenergy
renewable electricity production and the possibility of bioliquids with BECCS. As shown in
Bauer et al. (2018), these models apply either optimistic assumptions for the availability of
nonbiomass renewables, or nonbinding constraints on capacity ramp-up. This leads to a mitiga-
tion strategy where electricity is decarbonized through the rapid and large-scale deployment of
nonbiomass renewables, and conversion of biomass to liquids together with CCS. IMACLIM also
projects the production of liquid fuels, but for different reasons as it lacks the liquids BECCS
option. IMACLIM projects the lowest overall energy demand across all models, and its electricity
sector is decarbonized relatively easily by renewables, with biomass decarbonizing the transport
sector through conversion to liquids even though CCS cannot be added to the conversion process.
Due to its overall low energy demand, IMACLIM depends on BECCS the least of all models,
with BECCS accounting for 1.5GtCO2-eq/year in 2100, comparedwith 8-25GtCO2-eq/year from
the other models. POLES, IMAGE, AIM/CGE, and GRAPE allocate biomass to liquids and
electricity more equally than the other models. This is because these models face stricter
constraints on the deployment of other renewable electricity options, resulting in decarbonization
of the electric sector using multiple options (including BECCS and other renewable options), and
conversion of biomass to liquid fuels to aid decarbonization of the transport sector.

5 Conclusions

This study has elucidated the characterizations of bioenergy technologies in IAMs and how
they relate to technology deployment in scenarios likely to limit global average temperature to
below 2 °C. The results highlight differences in the representation of bioenergy technologies,
and the drivers and constraints of large scale adoption. Crucially, the results show that
projected bioenergy deployment is only partially dependent on technoeconomic parameteri-
zation, with biomass feedstock availability and CO2 cost being crucial factors. This finding is
in agreement with previous studies which investigated the projections of different models
under harmonized technoeconomic assumptions (Bosetti et al. 2015; Krey et al. 2019).

A number of general conclusions can be drawn from this analysis:

Bioenergy technology coverage and characterizations vary substantially While most
models include biobased electricity and liquid biofuels, their coverage of other technology
pathways (hydrogen, gasses) is limited. This is particularly important concerning biogases
since all the models that include this technology (BET, MESSAGEix-GLOBIOM, and
REMIND-MAgPIE) tend to adopt it to some extent. Furthermore, while all models include
a CCS option for bioelectricity, this is not the case for liquids and hydrogen. Concerning the
scaling-up of advanced bioenergy technologies, besides competition with other energy options
(fossil, renewable, nuclear), IAMs have limits on the annual growth of given technologies.
These differ across models and are based either on limits on allowed growth rates, adjusted
costs depending on desired growth, or in the case of CCS technologies, depletion of geologic
storage. Logistical issues which may hamper the large-scale utilization of bioenergy such as
seasonality and pre-processing of feedstocks are not explicitly dealt with in any of the models.
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Fig. 4 Deployment of different a liquids and b electricity energy carriers relative to levelized costs for 2050 and
their post-2050 trajectory direction. X-axis’ scales vary by model. LCOEs include capital, O&M, feedstock and
CDR costs. Line lengths do not show magnitude of change, only direction. For projected post-2050 changes see
online supplementary data and Online Resource 5. Only technologies with a nonnegligible deployment shown
and technologies without arrows cease to be deployed in the 2nd half of the twenty-first century

1616



Climatic Change (2020) 163:1603–1620

The technoeconomic assumptions of IAM models are largely in line with bottom-up
estimates. However, both model assumptions and bottom-up estimates vary
widely Bioenergy technology capital costs and efficiencies are in line with the literature and
expectations of experts assuming annual R&D expenditures more than double over the next few
years. These expenditures would have to focus on the development of advanced technologies such
as lignocellulosic biofuels and BECCS. If these improvements do not take place, mitigation costs
and the model infeasibility of scenarios could increase substantially as shown in Bauer et al. (2018).
Though there is limited data on the additional costs of CCS, models appear somewhat optimistic
about both the added costs and the efficiency penalty this technology may have.

Bioenergy conversion costs are primarily driven by biomass feedstock costs and CDR
payments In high bioenergy demand projections, most models show a modest reduction in capital
andO&Mcosts over time, with little variation acrossmodels. Feedstock costs are themain (andmost
uncertain) cost component of bioenergy for technologies without CCS. For bioenergy with CCS,
payments from CO2 removal could be substantial and more than offset feedstock and other costs.

Variation in bioenergy deployment across models cannot be understood from technol-
ogy costs alone While costs may be important for selecting specific facilities, the use of
bioenergy in mitigation strategies is driven by a combination of factors. Important determi-
nants include feedstock costs, the availability and costs of alternative mitigation options for
different end-uses, the availability of CDR and potential payments, the speed with which large
scale changes in the makeup of energy conversion facilities and integration can take place, and
the relative demand for different energy services.
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